
This article was downloaded by:

On: 27 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Taylor & Francis

Organic Preparations and Procedures International

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t902189982

SYNTHESIS OF (+)-OBTUNONE. A NEW ROUTE TO THE CADINANE SKELETON

Barry B. Snider^a; Zheng Chen^a

^a Department of Chemistry, Brandeis University, Waltham, MA

To cite this Article Snider, Barry B. and Chen, Zheng(1999) 'SYNTHESIS OF (+)-OBTUNONE. A NEW ROUTE TO THE CADINANE SKELETON', Organic Preparations and Procedures International, 31:5,537-541

To link to this Article: DOI: 10.1080/00304949909355337 URL: http://dx.doi.org/10.1080/00304949909355337

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

SYNTHESIS OF (±)-OBTUNONE.

A NEW ROUTE TO THE CADINANE SKELETON

Barry B. Snider* and Zheng Chen

Department of Chemistry, Brandeis University, Waltham, MA 02454-9110

Kuo and coworkers recently reported the isolation of the novel diterpene obtunone (1) and the known² dimer 2 from the heartwood of *Chamaecyparis Obtusa* var. *formosana*. Although obtunone is formally a diterpene, the authors suggested that it is biosynthesized by the Diels-Alder reaction of the hydroxycyclohexadienone corresponding to acetate 3 and myrcene (4).

The inverse electron demand Diels-Alder reactions of 6-acetoxy-6-methyl-2,4-cyclohexadienones with conjugated cycloalkadienes have been extensively explored, $^{3-6}$ suggesting that the Diels-Alder reaction of acetate 3 and the acyclic diene myrcene (4) should provide a practical route to obtunone (1). Reaction of acetate $3^{7.8}$ and myrcene in toluene at reflux for 35 h afforded 7% of dimer 5,8 the diacetate of 2, 3% of dimer 6 and 57% of obtunone acetate (7). The stereochemistry at the quaternary carbons of 5 was established by the NOEs between C_9 -Me and H_3 , and between C_5 -Me and both H_{4a} and H_{8a} . The stereochemistry at the quaternary carbons of 6 was established by the NOEs between H_3 and both H_4 and H_5 . The structure of obtunone acetate was established by NOEs between H_5 and H_5 are already at H_5 and H_5 and

Hydrolysis of obtunone acetate (7) with NaOH in MeOH at 25° for 4 h gave 95% of (±)-obtunone (1) with spectral data identical to those reported for the natural product. Hydrolysis of dimeric diacetates 5 and 6 provided mixtures of the corresponding diol and a phenol resulting from elimination of acetic acid as has been observed in related systems.

Obtunone (1) and acetate 7 are 5-vinylbicyclo[2.2.2]oct-2-enes, which should undergo a Cope rearrangement on heating to give the more stable *cis* decalin ring system.⁶ Heating 7 in

^{© 1999} by Organic Preparations and Procedures Inc.

SNIDER AND CHEN

o-dichlorobenzene at reflux for 40 h yielded 50% of Cope rearrangement product **8**. Similar treatment of **1** gave 75% of **9**. These *cis* decalins have the cadinane sesquiterpene skeleton with an additional prenyl group attached to the side chain.

We have completed the first synthesis of the novel diterpene obtunone (1) by the Diels-Alder reaction of acetoxycyclohexadienone 3 and myrcene 4 and demonstrated that the Cope rearrangement of these adducts provides an efficient new route to the cadinane sesquiterpene skeleton.

EXPERIMENTAL SECTION

NMR spectra were recorded at 400 MHz in $CDCl_3$ unless otherwise noted. Chemical shifts are reported in δ and coupling constants in Hz. IR spectra were recorded in cm⁻¹. Acetate **3** was prepared from carvacrol by oxidation with $Pb(OAc)_4$.^{7.8}

Diels-Alder Reaction of Acetate 3 and Myrcene (4).- A solution of acetate **3** (510 mg, 2.4 mmol) and myrcene (**4**) (600 mg, 4.4 mmol) in toluene (4 mL) was heated at reflux for 35 h under N₂. Removal of the solvent under reduced pressure and chromatography of the residue on silica gel (4:1 hexane/EtOAc) gave 260 mg (43%) of recovered myrcene (**4**), followed by 320 mg (38%, 57% based on recovered **3**) of obtunone acetate (**7**), 165 mg (33%) of recovered acetate **3**, 10 mg (2%, 3% based on recovered **3**) of dimer **6** and 25 mg (5%, 7% based on recovered **3**) of dimer **5**.

The data for (\pm) - $(1\alpha,4\alpha,4\alpha,5\beta,8a\alpha,9S^*)$ -4,4a,5,8a-tetrahydro-5,9-bis(acetyloxy)-5,9-dimethyl-2,8-bis(1-methylethyl)-1,4-ethanonaphthalene-6,10(4H)-dione (5): 1H NMR 5.88 $(s, 1, H_7)$, 5.82 (br d, 1, J=6.9, H_3), 3.56 (dd, 1, J=6.9, 1.6, H_4), 3.39 (dd, 1, J=8.5, 1.8, H_{8a}), 3.33 (dd, 1, J=8.5, 1.8, H_1), 3.29 (dd, 1, J=2.5, 1.8), 2.46 (sept, 1, J=7.0), 2.19 (s, 3), 2.11 (s, 3), 1.82 (sept d, J=7.0), 1.66 (s, 3), 1.45 (s, 3), 1.13 (d, 3, J=7.0), 1.11 (d, 3, J=7.0), 0.94 (d, 3, J=7.0), 0.88 (d, 3, J=7.0)

SYNTHESIS OF (±)-OBTUNONE. A NEW ROUTE TO THE CADINANE SKELETON

7.0); 13 C NMR 206.0, 195.1, 170.0 (2 C), 163.1, 147.6, 123.5, 122.0, 83.0, 80.3, 56.1, 41.8, 41.4, 39.9, 33.4, 32.0, 26.6, 22.9, 22.3, 22.1, 21.8, 20.6, 19.9, 18.9; IR 1738, 1701, 1367, 1245. A 1D NOESY experiment with irradiation of C_5 -CH₃ at δ 1.66 showed absorptions for H_{4a} at δ 3.33, H_{8a} at δ 3.39 and H_7 at δ 5.88. Irradiation of C_9 -CH₃ at δ 1.45 showed absorptions for H_4 at δ 3.56 and H_3 at δ 5.82. The data are identical to those previously reported.⁸

The data for (\pm) - $(1\alpha,4\alpha,4a\alpha,5\alpha,8a\alpha,9S^*)$ -4,4a,5,8a-tetrahydro-5,9-bis(acetyloxy)-5,9-dimethyl-2,8-bis(1-methylethyl)-1,4-ethanonaphthalene-6,10(4H)-dione (**6**): mp. 170-172°; ¹H NMR 5.84 (s, 1, H_7), 5.70 (d, 1, J=7.0, H_3), 3.75 (dd, 1, J=7.0, 1.8, H_4), 3.24 (br s, 1, H_1), 3.23 (br d, 1, J=8.0, 1.8, H_{8a}), 2.71 (dd, 1, J=8.0, 1.8, H_{4a}), 2.43 (sept, 1, J=6.7), 2.14 (s, 3), 1.90 (s, 3), 1.89 (sept, 1, J=6.7), 1.55 (s, 3), 1.46 (s, 3), 1.10 (d, 6, J=6.7), 0.93 (d, 3, J=6.7), 0.86 (d, 3, J=6.7); ¹³C NMR 204.9, 195.9, 170.0, 169.1, 162.8, 146.9, 124.0, 121.1, 82.5, 80.8, 55.2, 42.0, 41.3, 39.9, 33.5, 32.2, 23.5, 21.9, 21.6, 21.4, 20.5, 20.0, 19.1, 17.4; IR 1738, 1705, 1368, 1236. A 1D NOESY experiment with irradiation of C_5 -CH₃ at δ 1.55 showed absorptions for H_4 at δ 3.75, H_{4a} at δ 2.71 and H_3 at δ 5.70. Irradiation of C_9 -CH₃ at δ 1.46 showed absorptions for H_4 at δ 3.75 and H_3 at δ 5.70.

The data for (\pm) - $(1\alpha,3\alpha,4\alpha,7S^*)$ -3-acetyloxy-3-methyl-6-(1-methylethyl)-7-(5-methyl-1-methylene-4-hexenyl)-bicyclo[2.2.2]oct-5-en-2-one (obtunone acetate, **7**): 1 H NMR 6.03 (dt, 1, J = 7.3, 1.5), 5.09 (m, 1), 4.78 (s, 1), 4.71 (s, 1), 3.75 (ddd, 1, J = 7.3, 3.1, 2.5), 3.14 (br s, 1), 2.71 (dd, 1, J = 9.2, 7.0), 2.05 (s, 3), 2.01-2.18 (m, 5), 1.90 (ddd, 1, J = 13.0, 9.2, 3.1), 1.68 (s, 3), 1.60 (s, 3), 1.51 (s, 3), 1.44 (ddd, 1, J = 13.0, 7.0, 2.5), 0.98 (d, 3, J = 6.8), 0.92 (d, 3, J = 6.8); 13 C NMR 204.9, 169.8, 149.7, 145.0, 131.8, 125.2, 123.6, 110.0, 80.1, 54.9, 39.6, 38.3, 36.2, 33.1, 26.8, 26.5, 25.6, 21.8, 20.9, 20.8, 19.8, 17.7; IR 1736, 1367, 1238. A 1D NOESY experiment with irradiation of H_5 at δ 6.03 showed absorptions for H_4 at δ 3.75, C_3 -CH $_3$ at δ 1.51 and C_{17} -CH $_3$ at δ 0.98. Irradiation of H_{16} at δ 4.71 showed absorptions for H_6 at δ 4.78 and $H_{8\alpha}$ at δ 1.44. Irradiation of H_4 at δ 3.75 showed absorptions for H_5 at δ 6.03 and C_3 -CH $_3$ at δ 1.51. Irradiation of H_7 at δ 2.71 showed absorptions for H_1 at δ 3.14 and $H_{8\beta}$ at δ 1.90.

(±)-(1α,3α,4α,7*S**)-3-Hydroxy-3-methyl-6-(1-methylethyl)-7-(5-methyl-1-methylene-4-hexenyl)-bicyclo[2.2.2]oct-5-en-2-one (Obtunone, 1).- A solution of obtunone acetate (7) (70 mg, 0.20 mmol) in methanol (1 mL) was treated with aqueous NaOH (0.2 mL, 1 N). The reaction mixture was stirred for 4 h at 25°, acidified with 1 N HCl, and concentrated partially under reduced pressure. The aqueous solution was extracted with ether (3 x 2 mL), which was washed with brine (1 mL) and dried over Na₂SO₄. Removal of the solvent, followed by chromatography of the residue on silica gel (3:1 hexane/EtOAc) yielded 58 mg (95%) of obtunone (1): 1 H NMR 6.05 (ddd, 1, J = 7.3, 1.8, 1.8), 5.09 (m, 1), 4.77 (s, 1), 4.71 (s, 1), 3.09 (dd, 1, J = 1.8, 1.8), 2.83 (ddd, 1, J = 7.3, 2.4, 2.4), 2.70 (ddd, 1, J = 10.2, 6.0, 2.4), 2.39 (ddd, 1, J = 13, 10.2, 3.0), 2.11 (m, 5), 1.68 (s, 3), 1.60 (s, 3), 1.35 (ddd, 1, J = 13, 6.0, 2.4), 1.24 (s, 3), 0.99 (d, 3, J = 6.8), 0.91 (d, 3, J = 6.8); 13 C NMR 213.2, 150.2, 144.7, 131.9, 125.3, 123.8, 109.8, 72.2, 55.4, 42.8, 39.9, 36.3, 33.1, 26.6, 26.1, 25.9, 25.6, 21.0, 19.9, 17.7; IR 3429, 1725, 1130. A 1D NOESY experiment with irradiation of H₅ at δ 6.05 showed absorptions for H₄ at δ 2.83, C₃-CH₃ at δ 1.24 and C₁₇-CH₃ at δ 0.99. Irradiation of H₁₆ at δ 4.71 showed an absorption for

SNIDER AND CHEN

 $H_{8\alpha}$ at δ 1.35. Irradiation of H_1 at δ 3.09 showed an absorption for C_{17} -CH₃ at δ 0.91. Irradiation of H_4 at δ 2.83 showed absorptions for H_5 at δ 6.05, $H_{8\beta}$ at δ 2.39, $H_{8\alpha}$ at δ 1.35 and C_3 -CH₃ at δ 1.24. Irradiation of H_7 at δ 2.70 showed absorptions for H_1 at δ 3.09 and $H_{8\beta}$ at δ 2.39. Irradiation of $H_{8\beta}$ at δ 2.39 showed absorptions for H_4 at δ 2.83, H_7 at δ 2.70 and $H_{8\alpha}$ at δ 1.35. Irradiation of C_3 -CH₃ at δ 1.24 showed absorptions for H_5 at δ 6.05, H_4 at δ 2.83 and OH at δ 2.18. The data are identical to those previously reported.

Cope Rearrangement of Obtunone Acetate (7).- A solution of obtunone acetate (7) (20 mg, 0.058 mmol) in *o*-dichlorobenzene (5 mL) was heated at reflux for 40 h under N₂. Chromatography of the solution on silica gel (9:1 hexane/EtOAc) gave 10 mg (50%) of rearranged product **8**: mp. 103-104°; ¹H NMR 5.86 (d, 1, J = 1.8, H₃), 5.33 (s, 1, H₇), 5.06 (tt, 1, J = 6.7, 1.3), 3.21 (ddd, 1, J = 9.8, 7.3, 4.3, H_{8a}), 3.01 (br, 1, H_{4a}), 2.40 (sept, 1, J = 6.7), 2.34 (br s, 2), 2.11 (s, 3), 2.05-2.09 (m, 2), 1.98 (t, 2, J = 7.5), 1.92 (br, 2), 1.72 (s, 3), 1.68 (s, 3), 1.60 (s, 3), 1.08 (d, 3, J = 6.7), 1.06 (d, 3, J = 6.8); ¹³C NMR 195.9, 170.4, 170.2, 135.7, 131.8, 123.9, 121.3, 120.3, 86.2, 40.5, 37.7, 35.8, 30.7, 30.1, 26.0, 25.7, 23.6, 22.6, 22.0, 20.4, 20.1, 17.7; IR 3432, 2974, 1724, 1604. A 1D NOESY experiment with irradiation of H_{8a} at δ 3.21 showed absorptions for H_{4a} at δ 3.01, H₈ at 1.92 and C₁-CH₃ at δ 1.72. Irradiation of H_{4a} at δ 3.01 showed absorptions for H_{8a} at δ 3.21, C₁-CH₃ at δ 1.72, and H₅ at δ 2.34.

Cope Rearrangement of Obtunone (1).- A solution of obtunone (1) (29 mg, 0.09 mmol) in o-dichlorobenzene (4 mL) was heated at reflux for 40 h under N₂. Chromatography of the solution on silica gel (9:1 hexane/EtOAc) gave 22 mg (75%) of rearranged product **9**: 1 H NMR 5.90 (d, 1, J = 2.5, H₃), 5.36 (s, 1, H₇), 5.07 (tt, 1, J = 6.7, 1.5), 3.54 (s, 1, OH), 3.04 (dt, 1, J = 9.1, 3.0, H_{4a}), 2.44 (sept, 1, J = 6.7), 2.24-2.36 (m, 4), 2.06-2.10 (br t, 2), 1.98 (t, 2, J = 7.3), 1.68 (s, 3), 1.61 (s, 3), 1.37 (s, 3), 1.11 (d, 3, J = 6.7), 1.07 (d, 3, J = 6.7); 13 C NMR 203.0, 172.6, 135.1, 131.8, 123.9, 121.2, 120.1, 76.6, 43.7, 37.7, 36.5, 30.9, 30.2, 26.1, 25.7, 24.6, 23.3, 22.5, 20.6, 17.7; IR 2957, 1669, 1105. A 1D NOESY experiment with irradiation of C₁-CH₃ at δ 1.37 showed absorptions for the OH group at δ 3.54, H_{8a} at δ 2.34, and H_{4a} at δ 3.04. Irradiation of H_{4a} at δ 3.04 showed absorptions for H₅ at δ 2.36, H_{8a} at δ 2.34, and C₁-CH₃ at δ 1.37.

Acknowledgment.- We are grateful to the National Institutes of Health (GM-50151) for financial support.

REFERENCES

- 1. Y.-H. Kuo, C.-H. Chen and S.-L. Huang, Chem. Pharm. Bull. Jpn, 46, 181 (1998)
- 2. R. M. Carman, L. K. Lambert, W.T. Robinson and J. M. A. M. Van Dongen, *Australian J. Chem.* **39**, 1843 (1986).
- 3. V. K. Singh, B. N. S. Raju and P. T. Deota, *Indian J. Chem.*, **26B**, 301 (1987).
- 4. V. K. Singh, P. T. Deota and B. N. S. Raju, Synth. Commun., 17, 115 (1987).

SYNTHESIS OF (±)-OBTUNONE. A NEW ROUTE TO THE CADINANE SKELETON

- 5. V. K. Singh, P. T. Deota and A. V. Bedekar, J. Chem. Soc., Perkin Trans. 1, 903 (1992).
- 6. V. Singh, U. Sharma, V. Prasanna and M. Porinchu, Tetrahedron, 51, 6015 (1995).
- 7. F. Takacs, Monatsh. Chem., 95, 961 (1964).
- 8. R. M. Carman, S. Owsia and J. M. A. M. Van Dongen, Australian J. Chem., 40, 333 (1987).
- 9. K. Holmberg, Acta Chem. Scand. B, 28, 857 (1974).

(Received August 3, 1999; in final form September 13, 1999)